Effect of monoethanolamine salt-containing dicarboxylic acid and plant growth regulators on the absorption and accumulation of mercury

Saudi J Biol Sci. 2022 May;29(5):3448-3455. doi: 10.1016/j.sjbs.2022.02.035. Epub 2022 Feb 25.

Abstract

In the modern world, mercury has become an extremely dangerous pollutant due to intensive human activity. Currently, sources of mercury are wastes from chemical industries, as well as mines, oil combustion products, and household waste. Phytoextraction of heavy metals from soil is considered one of the most promising and cost-effective technologies. The efficiency of this process can be increased by introducing various amendments. The use of additives in phytoextraction can enhance the absorption of heavy metals and increase their concentration in various parts of the plant. This article presents the results of a study of various chelating agents for effective phytoextraction of mercury with white clover (Trifolium repens L.) and watercress (Lepidium sativum). In the present study, the monoethanolamine salt of dithiodiacetic acid (MEDBA) was used. The optimal concentration of MEDBA on watercress and creeping clover has been determined for highly efficient phytoextraction of mercury. Research has been carried out with a complex of exogenous growth regulators (GA / IAA / Fe-EDDHA). The results showed that the use of phytohormones and plant growth regulators led to a synergistic effect in combination with thiosulfate, but a pronounced inhibitory effect was observed with the use of MEDBA.

Keywords: Complexones; Dicarboxylic acid; Heavy metals; Phytoextraction of mercury.