All-Hot-Spot Bulk Surface-Enhanced Raman Scattering (SERS) Substrates: Attomolar Detection of Adsorbates with Designer Plasmonic Nanoparticles

J Am Chem Soc. 2022 Jul 27;144(29):13285-13293. doi: 10.1021/jacs.2c04514. Epub 2022 Jul 15.

Abstract

Here we report a synthetic pathway toward Au truncated octahedral dual-rim nanoframes wherein two functional facets are formed including (1) eight hot nanogaps formed by hexagonal nanoframes embracing core circular nanorings for near-field focusing and (2) six flat squares that facilitate the formation of well-ordered arrays of nanoframes through self-assembly. The existence of intra-nanogaps in a single entity enables strong electromagnetic near-field focusing, allowing single-particle surface-enhanced Raman spectroscopy. Then, we built "all-hot-spot bulk SERS substrates" with those entities, wherein the presence of truncated terraces with high homogeneity in size and shape facilitate spontaneous self-assembly into a highly ordered and uniform superlattice, exhibiting a limit of detection of attomolar concentrations toward 2-naphthalenethiol, which is 6 orders lower than that of monorim counterparts. The observed low limit of detection originates from the combined synergic effect from both inter- and intraparticle coupling in a superlattice, which we dubbed "all-hot-spot bulk SERS substrates".

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gold / chemistry
  • Metal Nanoparticles* / chemistry
  • Spectrum Analysis, Raman* / methods

Substances

  • Gold