Hierarchically Porous Mesostructured Polydopamine Nanospheres and Derived Carbon for Supercapacitors

Langmuir. 2022 Jul 26;38(29):8964-8974. doi: 10.1021/acs.langmuir.2c01141. Epub 2022 Jul 15.

Abstract

Polydopamine (PDA), with similar chemical and physical properties to eumelanin, is a typical artificial melanin material. With various functional groups, good biocompatibility, and photothermal conversion ability, PDA attracts great interest and is extensively studied. Endowing PDA with a porous structure would increase its specific surface area, therefore would significantly improve its performance in different application fields. However, creating abundant pores within the PDA matrix is a great challenge. Herein, a self-assembly/etching method is proposed to prepare hierarchically porous mesostructured PDA nanospheres. The oxidative polymerization of dopamine and hydrolysis of tetraethyl orthosilicate were coupled to co-assemble with a polyelectrolyte-surfactant complex template to form a mesostructured PDA/silicate nanocomposite. After removing templates and etching of silica, hierarchically porous PDA nanospheres were obtained with specific surface area and pore volume as high as 302 m2 g-1 and 0.67 cm3 g-1, respectively. Moreover, via subsequent carbonization and silica-etching, ordered mesoporous N-doped carbon microspheres (OMCMs) with ∼2 nm ordered mesopores and ∼20 nm secondary nanopores could be obtained. When used as electrodes of supercapacitors, the OMCMs exhibited a specific capacity of 341 F g-1 at 1 A g-1 with excellent rate capability, and the OMCM-based symmetric supercapacitor delivered a high energy density of 14.1 W h kg-1 at a power density of 250 W kg-1 and minor capacitance fading (only 2.6%) after 10,000 cycles at 2 A g-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon* / chemistry
  • Indoles
  • Nanospheres*
  • Polymers
  • Porosity
  • Silicon Dioxide

Substances

  • Indoles
  • Polymers
  • polydopamine
  • Carbon
  • Silicon Dioxide