CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage

Nat Chem Biol. 2022 Sep;18(9):1014-1022. doi: 10.1038/s41589-022-01082-8. Epub 2022 Jul 14.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a is widely used for genome editing and diagnostics, so it is important to understand how RNA-guided DNA recognition activates the cleavage of the target strand (TS) following non-target-strand (NTS) cleavage. Here we used single-molecule magnetic tweezers, gel-based assays and nanopore sequencing to explore DNA unwinding and cleavage. In addition to dynamic and heterogenous R-loop formation, we also directly observed transient double-stranded DNA unwinding downstream of the 20-bp heteroduplex and, following NTS cleavage, formation of a hyperstable 'clamped' Cas12a-DNA intermediate necessary for TS cleavage. Annealing of a 4-nucleotide 3' CRISPR RNA overhang to the unwound TS downstream of the heteroduplex inhibited clamping and slowed TS cleavage by ~16-fold. Alanine substitution of a conserved aromatic amino acid in the REC2 subdomain that normally caps the R-loop relieved this inhibition but favoured stabilisation of unwound states, suggesting that the REC2 subdomain regulates access of the 3' CRISPR RNA to downstream DNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems* / genetics
  • Constriction
  • DNA / genetics
  • DNA Cleavage
  • Gene Editing
  • Nucleic Acid Conformation
  • RNA
  • RNA, Guide, CRISPR-Cas Systems* / genetics

Substances

  • RNA, Guide, CRISPR-Cas Systems
  • RNA
  • DNA