Kinetic principles underlying pioneer function of GAGA transcription factor in live cells

Nat Struct Mol Biol. 2022 Jul;29(7):665-676. doi: 10.1038/s41594-022-00800-z. Epub 2022 Jul 14.

Abstract

How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Chromatin
  • DNA-Binding Proteins / metabolism
  • Drosophila / genetics
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Kinetics
  • Transcription Factors* / metabolism

Substances

  • Chromatin
  • DNA-Binding Proteins
  • Drosophila Proteins
  • Transcription Factors