Encapsulation of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in liposomes prepared by thin film hydration and their transfer to mesenchymal stem cells and cord blood hematopoietic stem cells

Arch Med Sci. 2020 Apr 18;18(4):1051-1061. doi: 10.5114/aoms.2020.94527. eCollection 2022.

Abstract

Introduction: Cytokines are important immune modulator factors controlling homeostasis of the body and are involved in tissue regeneration after wound healing. The encapsulation of cytokines in liposomes has many advantages potentially useful for their transfer to the cells. Liposomes protect cytokines from neutralization, improving their pharmacokinetics or biologic activity in vivo. They are targeted to specific cell types and may delay the release of cytokines, allowing their sustained paracrine delivery. Their physicochemical characteristics such as size, shape, charge, and stability are important parameters improving bio-distribution and prolonged pharmacokinetics of encapsulated cytokines.

Material and methods: We developed an efficient protocol for the encapsulation of two types of cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF), in liposomes that can be stored long term in the active state.

Results: This method allows for the encapsulation of 12-13% of the total amount of cytokines and 50% of encapsulated cytokines are entrapped in liposomes of more than ≤ 600 nm in diameter. We show that in the studied cell lines the liposome-encapsulated cytokines do not affect cell morphology, proliferation or mortality.

Conclusions: The G-CSF or GM-CSF can be delivered to the cells in working concentrations through the encapsulation in the liposomes. Before the clinical application, the efficiency of these liposomes should be confirmed by an in vivo study.

Keywords: delivery to stem cells; granulocyte colony-stimulating factor; granulocyte-macrophage colony-stimulating factor; liposomes; protein transfer to cells in vitro.