A novel method to measure air-immobile regions of the composting pile by inverse calculation combined with gas tracer test

Waste Manag. 2022 Aug 1:150:131-140. doi: 10.1016/j.wasman.2022.06.036. Epub 2022 Jul 10.

Abstract

Air-immobile regions in composting piles obstruct O2 mass transport and exacerbate the formation and emission of harmful off-gases. However, effective methods for measuring the parameters of these air-immobile regions are lacking. With quartz sand piles, this study first adjusted the circumstances of a gas tracer test (gas tracer, its injection volume, and chamber type) using the two-region model (TRM). The effects of β (proportional coefficient of gas in the air-mobile region) and ω (mass exchange coefficient) on the breakthrough curves (BTCs) of the gases were then explored. Finally, an inverse calculation method was used to measure the feature parameters of air-immobile regions in two composting piles (temperature-increasing and thermophilic phases) and estimate the O2 concentrations in different composting piles (50, 100, 200 cm whole height; layers of 50, 100, 200 cm height in a 200-cm high pile). The results showed that the optimal conditions were achieved when 100 mL helium (He) as the gas tracer and a cylinder with a height/diameter ratio of 3 as the chamber were used. With the simulating composting piles, increasing β or ω slowed breakthrough and decreased peak concentration in BTCs of a gas tracer. Tracer-inverse calculation protocol can be used to efficiently estimate the volume ratios of air-immobile regions (φ) and first-order mass transfer coefficient (α), with the values of 39%/46% and 0.001/0.006 min-1 in the composting piles during temperature-increasing /thermophilic phase. The TRM also predicted the O2 concentration in the off-gas or air-mobile/immobile regions of the temperature-increasing-phase composting piles.

Keywords: Air-immobile region; Composting; Greenhouse gas; Sewage sludge; Two-region model.

MeSH terms

  • Composting*
  • Gases
  • Soil
  • Temperature

Substances

  • Gases
  • Soil