Characterization of Diastereomeric Equilibria of Pseudotetrahedral Bis[(R or S)-N-1-(Ar)Ethylsalicylaldiminato-κ2 N,O]zinc(II) with Λ/Δ-Chirality-At-Metal Induction

ChemistryOpen. 2022 Jul;11(7):e202200116. doi: 10.1002/open.202200116.

Abstract

A family of bis[(R or S)-N-1-(Ar)ethylsalicylaldiminato-κ2 N,O]-Δ/Λ-zinc(II) {Ar=C6 H5 (ZnRL1 or ZnSL1 ), p-CH3 OC6 H4 (ZnRL2 or ZnSL2 ) and p-ClC6 H4 (ZnRL3 or ZnSL3 )} compounds was synthesized and investigated by multiple methods. They feature Λ/Δ-chirality-at-metal induction along the pseudo-C2 axis of the molecules. The chirality induction is quantitative in the solid state, explored by X-ray crystallography and powder X-ray diffraction (PXRD), where R or S-ligated complexes diastereoselectively yield Λ or Δ-configuration at the metal. On the other hand, Λ and Δ-diastereomers co-exist in solution. The Λ⇆Δ equilibrium is solvent- and temperature-dependent. Electronic circular dichroism (ECD) spectra confirm the existence of a diastereomeric excess of Λ-ZnRL1-3 or Δ-ZnSL1-3 in solution. DSC analysis reveals thermally induced irreversible phase transformation from a crystalline solid to an isotropic liquid phase. ECD spectra were reproduced by DFT geometry optimizations and time-dependent DFT (TD-DFT) calculations, providing ultimate proof of the dominant chirality atmetal in solution.

Keywords: Schiff base ligand; chirality; diastereomeric equilibrium; metal complexes; spectroscopic investigation.