Cl-Initiated oxidation of methacrolein under NOx-free conditions studied by VUV photoionization mass spectrometry

Phys Chem Chem Phys. 2022 Jul 27;24(29):17471-17478. doi: 10.1039/d2cp02101c.

Abstract

The Cl-initiated oxidation of methacrolein (MACR, C4H6O) under NOx-free conditions has been investigated in a fast flow tube by using a home-made vacuum ultraviolet (VUV) photoionization mass spectrometer complemented by high-level theoretical calculations. The key species such as intermediates and radicals together with products involved in the oxidation are observed online and confirmed in photoionization mass spectra. The reaction potential energy surfaces of the transient C4H5O and C4H6OCl radicals, formed from the hydrogen-abstraction reaction and the addition reaction of MACR with Cl atoms, with oxygen have been theoretically calculated to illuminate the formation of the peroxy radicals of C4H5OO2 and C4H6OClO2. The photoionization processes of these peroxy radicals, whose cations are not stable, and their individual self-reactions as well as bimolecular reactions with HO2 radical are studied and discussed. In addition, kinetic experiments are also performed to get the time evolution of specific products and compared with theoretical models, providing a detailed insight into the reaction mechanism of the Cl-initiated oxidation of MACR.