Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1

Biochem Biophys Res Commun. 2022 Sep 17:621:101-108. doi: 10.1016/j.bbrc.2022.07.002. Epub 2022 Jul 4.

Abstract

Over the past 25 years, chemotherapy regimens for osteosarcoma have failed to improve the 65-70% long-term survival rate. Radiation therapy is generally ineffective except for palliative care. We here investigated whether osteosarcoma can be sensitized to radiation therapy targeting specific molecules in osteosarcoma. Large-scale RNA sequencing analysis in osteosarcoma tissues and cell lines revealed that FGFR1 is the most frequently expressed receptor tyrosine kinase in osteosarcoma. Nuclear FGFR1 (nFGFR1) was observed by subcellular localization assays. The functional studies using a FGFR1IIIb antibody or small molecule FGFR1 inhibitors showed that nFGFR1, but not membrane-bound FGFR1, induces G2 cell-cycle checkpoint adaptation, cell survival and polyploidy following irradiation in osteosarcoma cells. Further, the activation of nFGFR1 induces Histone H3 phosphorylation at Ser 10 and c-jun/c-fos expression to contribute cell survival rendering radiation resistance. Furthermore, an in vivo mouse study revealed that radiation resistance can be reversed by the inhibition of nFGFR1. Our findings provide insights into the potential role of nFGFR1 to radiation resistance. Thus, we propose nFGFR1 could be a potential therapeutic target or a biomarker to determine which patients might benefit from radiation therapy.

Keywords: Cell survival; G2 checkpoint adaptation; Histone modification; Nuclear FGFR1; Osteosarcoma; Radiation resistance; c-Jun/c-Fos expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Neoplasms* / drug therapy
  • Bone Neoplasms* / genetics
  • Bone Neoplasms* / radiotherapy
  • Cell Line, Tumor
  • Cell Nucleus / metabolism
  • Cell Survival
  • Humans
  • Mice
  • Osteosarcoma* / drug therapy
  • Osteosarcoma* / genetics
  • Osteosarcoma* / radiotherapy
  • Phosphorylation
  • Receptor, Fibroblast Growth Factor, Type 1 / genetics
  • Receptor, Fibroblast Growth Factor, Type 1 / metabolism

Substances

  • FGFR1 protein, human
  • Receptor, Fibroblast Growth Factor, Type 1