Marine Antifouling Coatings Based on Durable Bottlebrush Polymers

ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32497-32509. doi: 10.1021/acsami.2c06647. Epub 2022 Jul 11.

Abstract

We report a next-generation, biocide-free, and durable marine antifouling coating technology. To achieve this, we combined two different polymers previously developed by us. First, we synthesized well-defined 2-hydroxypropyl acrylamide (HPA) based bottlebrush polymers with concentrated polymer brush (CPB) structures, which exhibit excellent bioinertness, and second, we synthesized photoreactive copolymers of 2-hydroxypropyl acrylamide (HPA) and N-benzophenone acrylamide (BPA), which can be cross-linked by exposure to sunlight for 30 min. Simply mixing the bottlebrush polymers with the photoreactive copolymers and applying these as a coating provided a scalable method for achieving effective antifouling properties in one step on a broad range of polymer substrate materials. The resistance of bottlebrushes against acid and base hydrolysis was demonstrated in accelerated degradation experiments at 80 °C, and the coating thickness was found to be stable after 3 months of incubation in sea water. Optimized coatings prevented cypris larva attachment for up to 9 days and prevented the settling of marine organisms in the sea for up to 73 days. Due to the ease of application, long-term durability, and effective antifouling performance, our bottlebrush coating technology is expected to be exploited in biocide-free marine paints.

Keywords: 2-hydroxypropyl acrylamide; N-benzophenone acrylamide; bottlebrush polymer; concentrated polymer brush; marine biofouling; photoreactive polymer.