Bionic eye system mimicking microfluidic structure and intraocular pressure for glaucoma surgery training

PLoS One. 2022 Jul 11;17(7):e0271171. doi: 10.1371/journal.pone.0271171. eCollection 2022.

Abstract

Among increasing eye diseases, glaucoma may hurt the optic nerves and lead to vision loss, the treatment of which is to reduce intraocular pressure (IOP). In this research, we introduce a new concept of the surgery simulator for Minimally Invasive Glaucoma Surgery (MIGS). The concept is comprised of an anterior eye model and a fluidic circulatory system. The model made of flexible material includes a channel like the Schlemm's canal (SC) and a membrane like the trabecular meshwork (TM) covering the SC. The system can monitor IOP in the model by a pressure sensor. In one of the MIGS procedures, the TM is cleaved to reduce the IOP. Using the simulator, ophthalmologists can practice the procedure and measure the IOP. First, considering the characteristics of human eyes, we defined requirements and target performances for the simulator. Next, we designed and manufactured the prototype. Using the prototype, we measured the IOP change before and after cleaving the TM. Finally, we demonstrated the availability by comparing experimental results and target performances. This simulator is also expected to be used for evaluations and developments of new MIGS instruments and ophthalmic surgery robots in addition to the surgical training of ophthalmologists.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glaucoma* / surgery
  • Humans
  • Intraocular Pressure
  • Microfluidics
  • Trabecular Meshwork / physiology
  • Visual Prosthesis*

Grants and funding

Fumihito Arai acquired the fund of Adaptable and Seamless Technology Transfer Program through Target-Driven R and D (JP), JPMJTM19YL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.