New hybrid multiplanar cone beam computed tomography-laser-fluoroscopic-guided approach in cochlear implant surgery

Int J Comput Assist Radiol Surg. 2022 Oct;17(10):1837-1843. doi: 10.1007/s11548-022-02703-2. Epub 2022 Jul 11.

Abstract

Purpose: Cochlea implant surgery with proper positioning of the cochlear electrode can be challenging. Intraoperative real-time hybrid laser-fluoroscopic-guided navigation based on a multiplanar cone beam computed tomography (CBCT) dataset opens up the opportunity to immediate radiological control of primary electrode misalignments and offering new insights into the cochlea electrode insertion routes and favorable cochlear implant-insertion angle.

Methods: In this retrospective study, 50 cases (29 males, 18 females) of conventional electrode implantation (without intraoperative image control; group A) and nine cases (7 males, 2 females) of CBCT-laser-fluoroscopic-guided surgery (group B) were included in the present study. CBCT-laser-guided surgery under real-time fluoroscopic control was conducted using an intraoperative C-arm CBCT. All patients received preoperative cross-sectional imaging (CT and MRI), in which cochlear malformation could be excluded. Postoperatively, we looked for electrode misplacements.

Results: In group A, electrode misalignment was detected postoperatively in 14 of 50 cases (28.0%). In group B, primary electrode misalignment was detected intraoperatively in two patients (22.2%). In both patients, the misalignments were corrected in the same session. The comparison of cochlear insertion angles showed significant differences. Group A: 47.5 ± 2.6° (actual conventional surgery) vs 17.6 ± 2.8° (theoretical CBCT-laser-fluoroscopic-guided surgery) P < 0.001. Group A vs group B: 47.5 ± 2.6° (actual conventional surgery; Group A) vs 17.9 ± 2.5° (actual CBCT-laser-fluoroscopic-guided surgery; Group B) P < 0.001.

Conclusion: We consider that an intraoperative hybrid CBCT-laser-fluoroscopic-controlled approach in cochlear implant surgery using a C-arm CT can be beneficial, because electrode misalignments can be reduced and if it does occur, remedied in the same surgical session.

Keywords: CBCT; Cochlea implant; Hybrid laser-fluoroscopic; Intraoperative imaging.

MeSH terms

  • Cochlea / surgery
  • Cochlear Implantation* / methods
  • Cochlear Implants*
  • Cone-Beam Computed Tomography / methods
  • Female
  • Humans
  • Lasers
  • Male
  • Retrospective Studies