Domestic cat embryos reveal unique transcriptomes of developing incisor, canine, and premolar teeth

J Exp Zool B Mol Dev Evol. 2022 Dec;338(8):516-531. doi: 10.1002/jez.b.23168. Epub 2022 Jul 11.

Abstract

Division of the dentition into morphologically distinct classes of teeth (incisors, canines, premolars, and molars) and the acquisition of tribosphenic molars facilitated precise occlusion between the teeth early in mammal evolution. Despite the evolutionary and ecological importance of distinct classes of teeth with unique cusp, crest, and basin morphologies, relatively little is known about the genetic basis for the development of different tooth classes within the embryo. Here we investigated genetic differences between developing deciduous incisor, canine, and premolar teeth in the domestic cat (Felis catus), which we propose to be a new model for tooth development. We examined differences in both developmental timing and crown morphology between the three tooth classes. Using RNA sequencing of early bell stage tooth germs, we showed that each of the three deciduous tooth classes possess a unique transcriptional profile. Three notable groups of genes emerged from our differential expression analysis; genes involved in the extracellular matrix (ECM), Wnt pathway signaling, and members of multiple homeobox gene families (Lhx, Dlx, Alx, and Nkx). Our results suggest that ECM genes may play a previously under-appreciated role in shaping the surface of the tooth crown during development. Differential regulation of these genes likely underlies differences in tooth crown shape and size, although subtle temporal differences in development between the tooth germs could also be responsible. This study provides foundational data for future experiments to examine the function of these candidate genes in tooth development to directly test their potential effects on crown morphology.

Keywords: canine; cat; heterodonty; incisor; premolar; transcriptome.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bicuspid
  • Cats
  • Incisor* / anatomy & histology
  • Mammals / genetics
  • Molar
  • Odontogenesis / genetics
  • Transcriptome*