Microstructure Analysis of Drawing Effect and Mechanical Properties of Polyacrylonitrile Precursor Fiber According to Molecular Weight

Polymers (Basel). 2022 Jun 28;14(13):2625. doi: 10.3390/polym14132625.

Abstract

Polyacrylonitrile (PAN) fiber is the most widely used carbon fiber precursor, and methyl acrylate (MA) copolymer is widely used for research and commercial purposes. The properties of P (AN-MA) fibers improve increasingly as the molecular weight increases, but high-molecular-weight materials have some limitations with respect to the manufacturing process. In this study, P (AN-MA) precursor fibers of different molecular weights were prepared and analyzed to identify an efficient carbon fiber precursor manufacturing process. The effects of the molecular weight of P (AN-MA) on its crystallinity and void structure were examined, and precursor fiber content and process optimizations with respect to molecular weight were conducted. The mechanical properties of high-molecular-weight P (AN-MA) were good, but the internal structure of the high-molecular-weight material was not the best because of differences in molecular entanglement and mobility. The structural advantages of a relatively low molecular weight were confirmed. The findings of this study can help in the manufacturing of precursor fibers and carbon fibers with improved properties.

Keywords: drawing; microstructure; molecular weight; polyacrylonitrile; precursor.