Comparison of Microleakage in Nanocomposite and Amalgam as a Crown Foundation Material Luted with Different Luting Cements under CAD-CAM Milled Metal Crowns: An In Vitro Microscopic Study

Polymers (Basel). 2022 Jun 27;14(13):2609. doi: 10.3390/polym14132609.

Abstract

Microleakage is a persistent problem despite advancement in materials and techniques in fixed prosthodontics. This leads to the importance of sound crown foundation material and luting agents used to maintain the marginal seal. The literature is deficient with studies, comparing microleakage under various crown foundation materials and luting agents, especially with CAD-CAM (computer-aided design and computer-aided manufacturing) metal crowns. This study was aimed to compare microleakage in a nanocomposite/dentinal bonding agent and amalgam/cavity varnish as crown foundation materials luted with two different luting cements: resin-reinforced glass ionomer cement and self-adhesive resin cement, under both dry and contaminated conditions. A hundred intact, caries-free human molars were prepared to receive crown foundation material and extra coronal restorations. Amalgams with cavity varnish and nanocomposites with dentinal bonding agent in both ideal and contaminated conditions were used as crown foundation materials. After restoration, each sample was cemented with a CAD-CAM milled metal crown using two different luting agents-resin-reinforced glass ionomer cement and self-adhesive resin cements both in ideal and contaminated conditions. Cementation was followed by thermocycling of samples, immersion in erythrosine B dye, embedding in clear auto polymerizing acrylic resin and sectioning to evaluate microleakage using stereomicroscope. The mean microleakage between different luting cements on the experimental side of the facial surface was 137.64 μm and 211.01 μm for resin-reinforced GIC and for self-adhesive resin cement was 119.78 μm and 150.42 μm, under ideal and contaminated condition, respectively. There was a significant difference in mean micro-leakage between different crown foundation material and cement groups used in the study. The composites and amalgam, both when used as crown foundation material and luted with use of technically advanced CAD-CAM metal crown with self-adhesive resin cement (in both ideal or contaminated condition), showed less microleakage than in resin-reinforced glass ionomer cement. Overall, the self-adhesive resin cement showed comparatively reduced microleakage in all combinations with different crown foundations. Thus, this combination can be used in daily clinical practice to provide better protection from further decay.

Keywords: CAD-CAM; adhesive cement; crown foundation materials; luting cements; microleakage; milled crown.