Four-Level Micro-Via Technology (4LµV) for ASIC Integration in Active Flexible Sensor Arrays

Sensors (Basel). 2022 Jun 22;22(13):4723. doi: 10.3390/s22134723.

Abstract

Systems-in-foil with multi-sensor arrays require extensive wiring with large numbers of data lines. This prevents scalability of the arrays and thus limits the applications. To enable multiplexing and thus reducing the external connections down to few digital data links and a power supply, active circuits in the form of ASICs must be integrated into the foils. However, this requires reliable multilayer wiring of the sensors and contacts for chip integration. As an elegant solution to this, a new manufacturing process for multilayer wiring in polyimide-based sensor foils has been developed that also allows ASIC chips to be soldered. The electrical four-level micro-via connections and the contact pads are generated by galvanic copper deposition after all other process steps, including stacking and curing of polyimide layers, are completed. Compared to layer by layer via technology, the processing time is considerably reduced. Because copper plating of vias and solderable copper contact pads happens as the final step, the risk of copper oxidation during polyimide curing is completely eliminated. The entire fabrication process is demonstrated for six strain sensor nodes connected to a surface-mounted ASIC as a detecting unit for sensing spatially resolved bending states. Each sensor node is a full-bridge configuration consisting of four strain gauges distributed across interconnected layers. The sensor foil allows bending of +/-120° without damage. This technology can be used in future for all kinds of complex flexible systems-in-foil, in particular for large arrays of sensors.

Keywords: chip-in-foil-integration; copper electroplating; flexible sensor arrays; micro-via.