Security Risk Intelligent Assessment of Power Distribution Internet of Things via Entropy-Weight Method and Cloud Model

Sensors (Basel). 2022 Jun 21;22(13):4663. doi: 10.3390/s22134663.

Abstract

The current power distribution Internet of Things (PDIoT) lacks security protection terminals and techniques. Network security has a large exposure surface that can be attacked from multiple paths. In addition, there are many network security vulnerabilities and weak security protection capabilities of power distribution Internet of Things terminals. Therefore, it is crucial to conduct a scientific assessment of the security of PDIoT. However, traditional security assessment methods are relatively subjective and ambiguous. To address the problems, we propose to use the entropy-weight method and cloud model theory to assess the security risk of the PDIoT. We first analyze the factors of security risks in PDIoT systems and establish a three-layer PDIoT security evaluation index system, including a perception layer, network layer, and application layer. The index system has three first-level indicators and sixteen second-level indicators. Then, the entropy-weight method is used to optimize the weight of each index. Additionally, the cloud model theory is employed to calculate the affiliation degree and eigenvalue of each evaluation index. Based on a comprehensive analysis of all evaluation indexes, we can achieve the security level of PDIoT. Taking the PDIoT of Meizhou Power Supply Bureau of Guangdong Power Grid as an example for empirical testing, the experimental results show that the evaluation results are consistent with the actual situation, which proves that the proposed method is effective and feasible.

Keywords: cloud model; entropy-weight method; evaluation index system; power distribution Internet of Things; security risk assessment.

Grants and funding

This research was funded by the National Natural Science Foundation of China (No. 62171328) and by Education Sciences Planning of China (No. 2019GA090).