Nanoscale Structure of Langmuir-Blodgett Film of Bent-Core Molecules

Nanomaterials (Basel). 2022 Jul 2;12(13):2285. doi: 10.3390/nano12132285.

Abstract

Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the nanoscale structural characterization of BCM films prepared using the Langmuir-Blodgett technique. Even though BCMs are quite different from typical amphiphilic molecules, we demonstrate that stable molecular films form over water, which can then be transferred onto silicon substrates. The combination of Brewster angle microscopy, atomic force microscopy, and X-ray reflectivity measurements shows that the molecules, once transferred onto a solid substrate, form a bilayer structure with a bottom layer of flat molecules and an upper layer of upright molecules. These results suggest that Langmuir-Blodgett films of BCMs can provide a useful means to control the alignment of this class of liquid crystals.

Keywords: Langmuir–Blodgett films; X-ray reflectivity; bent-core mesogens.