Cu Nanoparticles Modified Step-Scheme Cu2O/WO3 Heterojunction Nanoflakes for Visible-Light-Driven Conversion of CO2 to CH4

Nanomaterials (Basel). 2022 Jul 2;12(13):2284. doi: 10.3390/nano12132284.

Abstract

In this study, Cu and Cu2O hybrid nanoparticles were synthesized onto the WO3 nanoflake film using a one-step electrodeposition method. The critical advance is the use of a heterojunction consisting of WO3 flakes and Cu2O as an innovative stack design, thereby achieving excellent performance for CO2 photoreduction with water vapor under visible light irradiation. Notably, with the modified Cu nanoparticles, the selectivity of CH4 increased from nearly 0% to 96.7%, while that of CO fell down from 94.5% to 0%. The yields of CH4, H2 and O2 reached 2.43, 0.32 and 3.45 mmol/gcat after 24 h of visible light irradiation, respectively. The boosted photocatalytic performance primarily originated from effective charge-transfer in the heterojunction and acceleration of electron-proton transfer in the presence of Cu nanoparticles. The S-scheme charge transfer mode was further proposed by the in situ-XPS measurement. In this regard, the heterojunction construction showed great significance in the design of efficient catalysts for CO2 photoreduction application.

Keywords: CO2 reduction; Cu/Cu2O/WO3; S-scheme; photocatalysis; selectivity.