Novel Magnetic Nanocomposites Based on Carboxyl-Functionalized SBA-15 Silica for Effective Dye Adsorption from Aqueous Solutions

Nanomaterials (Basel). 2022 Jun 29;12(13):2247. doi: 10.3390/nano12132247.

Abstract

In this study, three novel magnetic nanocomposites based on carboxyl-functionalized SBA-15 silica and magnetite nanoparticles were prepared through an effective and simple procedure and applied for methylene blue (MB) and malachite green G (MG) adsorption from single and binary solutions. Structure, composition, morphology, magnetic, and textural properties of the composites were thoroughly investigated. The influence of the amount of carboxyl functional groups on the physicochemical and adsorptive properties of the final materials was investigated. The capacity of the synthesized composites to adsorb MB and MG from single and binary solutions and the factors affecting the adsorption process, such as contact time, solution pH, and dye concentration, were assessed. Kinetic modelling showed that the dye adsorption mechanism followed the pseudo-second-order kinetic model, indicating that adsorption was a chemically controlled multilayer process. The adsorption rate was simultaneously controlled by external film diffusion and intraparticle diffusion. It was evidenced that the molecular geometry of the dye molecule plays a major role in the adsorption process, with the planar geometry of the MB molecule favoring adsorption. The analysis of equilibrium data revealed the best description of MB adsorption behavior by the Langmuir isotherm model, whereas the Freundlich model described better the MG adsorption.

Keywords: adsorption; carboxyl-functionalized SBA-15; magnetite; malachite green G; methylene blue.

Grants and funding

This research received no external funding.