Magnetic Force Probe Characterizations of Nanoscaled Ferromagnetic Domains: Finite-Element Magnetostatic Simulations

Nanomaterials (Basel). 2022 Jun 28;12(13):2212. doi: 10.3390/nano12132212.

Abstract

Microscopic characterization of magnetic nanomaterials by magnetic probe interacting with ferromagnetic nano-domains is proposed according to finite-element magnetostatic field simulations. Magnetic forces detected by microscopic probe are systematically investigated on magnetic moment orientation, magnetization intensity and geometry of ferromagnetic nano-domains, and especially on permanent magnetic coating thickness and tilting angle of probe, to provide a theoretical basis for developing magnetic force microscopy. Magnetic force direction is primarily determined by magnetic moment orientation of nanosample, and the tip curvature dominates magnetic force intensity that is meanwhile positively correlated with nanosample magnetization and probe magnetic coating thickness. Nanosample should reach a critical thickness determined by its transverse diameter to be capable of accurately detecting the magnetic properties of ferromagnetic nanomaterials. Magnetic force signal relies on probe inclination when the sample magnetic moment is along probe tilting direction, which, however, is not disturbed by probe inclination when sample magnetic moment is perpendicular to probe tilting plane. Within the geometry of satisfying a critical size requirement, the magnetic force can successfully image the ferromagnetic nano-domains by characterizing their sizes and magnetic moment orientations. The present study is expected to provide effective analyzing schemes and theoretical evidences for magnetic force microscopy of characterizing magnetic structures in ferromagnetic nanomaterials.

Keywords: ferromagnetic nanomaterial; finite-element simulation; magnetic domain; magnetic force microscopy.