Genetic Inheritance of Stripe Rust (Puccinia Striiformis) Resistance in Bread Wheat Breeding Lines at Seedling and Maturity Stages

Plants (Basel). 2022 Jun 27;11(13):1701. doi: 10.3390/plants11131701.

Abstract

One hundred and five (105) bread wheat (Triticum aestivum L.) genotypes, including five commercial checks, were screened for stripe rust resistance at seedling and adult plant stages. Seedlings grown under controlled conditions were screened for disease resistance after 12 days concerning disease incidence percentage after inoculation. K-means cluster analysis divided the genotypes into five different classes according to the presence of virulence/avirulence profile, i.e., class 1, 2, 3, 4 and 5. The same set of genotypes was grown under field conditions for adult plant resistance. Data for disease scoring and different yield and yield-related parameters was recorded. A comparison of breeding lines indicated that all studied traits were negatively affected by disease incidence. Further cluster analysis ranked the genotypes into three distinct groups with Group I and III being the most diverse. Thirteen stripe rust resistance lines were identified using seedling and adult plant resistance strategies. Correlation analysis indicated a negative association between stripe rust incidence and yield and yield-related traits, particularly grains per spike, grain weight per spike, thousand-grain weight, and grain yield per plant. These findings suggested that stripe rust resistance negatively affects yield and yield related traits. The breeding programs aiming at the development of high yielding varieties must also focus on stripe rust resistance.

Keywords: Triticum aestivum; cluster analysis; genetic studies; yellow rust.

Grants and funding

This research received no external funding.