Functional Profiling of In Vitro Reactivated Memory B Cells Following Natural SARS-CoV-2 Infection and Gam-COVID-Vac Vaccination

Cells. 2022 Jun 21;11(13):1991. doi: 10.3390/cells11131991.

Abstract

Both SARS-CoV-2 infection and vaccination have previously been demonstrated to elicit robust, yet somewhat limited immunity against the evolving variants of SARS-CoV-2. Nevertheless, reports performing side-by-side comparison of immune responses following infection vs. vaccination have been relatively scarce. The aim of this study was to compare B-cell response to adenovirus-vectored vaccination in SARS-CoV-2-naive individuals with that observed in the COVID-19 convalescent patients six months after the first encounter with the viral antigens. We set out to use a single analytical platform and performed comprehensive analysis of serum levels of receptor binding domain (RBD)-specific and virus-neutralizing antibodies, frequencies of RBD-binding circulating memory B cells (MBCs), MBC-derived antibody-secreting cells, as well as RBD-specific and virus-neutralizing activity of MBC-derived antibodies after Gam-COVID-Vac (Sputnik V) vaccination and/or natural SARS-CoV-2 infection. Overall, natural immunity was superior to Gam-COVID-Vac vaccination. The levels of neutralizing MBC-derived antibodies in the convalescent patients turned out to be significantly higher than those found following vaccination. Our results suggest that after six months, SARS-CoV-2-specific MBC immunity is more robust in COVID-19 convalescent patients than in Gam-COVID-Vac recipients. Collectively, our data unambiguously indicate that natural immunity outperforms Gam-COVID-Vac-induced immunity six months following recovery/vaccination, which should inform healthcare and vaccination decisions.

Keywords: COVID-19; Gam-COVID-Vac vaccine; SARS-CoV-2; Sputnik V vaccine; humoral immunity; memory B cells; neutralizing antibodies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19* / prevention & control
  • Humans
  • Memory B Cells
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus
  • Vaccination

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2

Grants and funding

This work was supported by the Russian Science Foundation (Project 21-15-00286). Maria G. Byazrova was supported by the Strategic Academic Leadership Program from RUDN University of Minobrnauki.