The Impact of Cognitive Function on Virtual Reality Intervention for Upper Extremity Rehabilitation of Patients With Subacute Stroke: Prospective Randomized Controlled Trial With 6-Month Follow-up

JMIR Serious Games. 2022 Jul 8;10(3):e33755. doi: 10.2196/33755.

Abstract

Background: Stroke is among the leading causes of long-term disability worldwide. Motor impairments after stroke not only impact the individuals quality of life but also lay substantial burdens on the society. Motor planning is a key component of cognitive function that impacts motor control. Hand movements such as grasping or reaching to grasp require the application of correct force and the coordination of multiple limb segments. Successful completion of hand motor task requires a certain degree of cognitive function to anticipate the requirement of the task. Cognitive function may thus be a confounding factor to rehabilitation outcomes.

Objective: This study aims to explore the impact of cognitive function on functional outcomes in people with subacute stroke after VR intervention.

Methods: Patients with stroke were first stratified into cognitively normal (CN) and cognitively impaired (CI), followed by allocation to the VR or control group (CG). Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Barthel Index (BI), and Instrumental Activities of Daily Living (IADL) were recorded at baseline, 3 weeks after the intervention, and 3 and 6 months after the intervention. The between-group and within-group differences were assessed by repeated-measures analysis of variance (ANOVA).

Results: The between-group comparison indicated that FMA-UE, BI, and IADL (time effect P<.001 for all) scores improved significantly in both groups after the intervention. Repeated-measures ANOVA indicated that FMA-UE, BI, and IADL (time effect P<.001 for all) were significantly different in each subgroup after the intervention. For BI score, the ANOVA results showed obvious interaction effects (treatment × time × cognitive effect, P=.04).

Conclusions: VR intervention was as effective as traditional conventional therapy in improving upper limb function regardless of the cognitive functional level. Patients with stroke with impaired cognitive function may gain more improvement in upper limb function and independency in performing activities of daily living after a VR-based intervention.

Trial registration: Chinese Clinical Trial Registry ChiCTR-IOC-15006064; https://tinyurl.com/4c9vkrrn.

Keywords: cognitive function; motor function of upper extremity; stroke; virtual reality.