Aramid-wrapped CNT hybrid sol-gel sorbent for polycyclic aromatic hydrocarbons

RSC Adv. 2022 Jun 20;12(28):18077-18083. doi: 10.1039/d2ra02659g. eCollection 2022 Jun 14.

Abstract

This work describes the preparation of an analytical microextraction sorbent using a simple and versatile sol-gel hybrid composite, i.e., aramid oligomers wrapping multi-walled carbon nanotubes (CNTs) covalently bonded to a porous silica network. To overcome the inherent shortcomings of the CNTs' solubility and dispersion in both organic phases and in the sol-gel solution, the outer surface of the CNTs was initially functionalized with carboxylic acid groups and then reacted with both aramid oligomers and 3-aminopropyl triethoxysilane (APTES). The obtained sorbent was characterized by FT-IR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Using sol-gel chemistry, the functionalized CNTs were coated onto SPME fibers and used in conjunction with GC-MS for the analysis of polycyclic aromatic hydrocarbons (PAHs) in water and soil samples. Excellent repeatability (run-to-run RSD% ∼ 8) and reproducibility (fiber-to-fiber RSD% ∼ 6) were achieved in addition to low LODs (0.10-0.30 ng mL-1) and noticeable recovery%. The present method of sorbent preparation led to enhanced thermal and chemical stabilities, a long sorbent lifetime and good affinity towards PAHs. Moreover, the present sorbent enhanced the extraction capability by more than 30% compared to that of commercially available PDMS counterparts.