Gangliosides in nervous system development, regeneration, and pathologies

Neural Regen Res. 2023 Jan;18(1):81-86. doi: 10.4103/1673-5374.343890.

Abstract

Gangliosides, sialic acid-containing sphingolipids, are major constituents of neuronal membranes. According to the number of sialic acids and the structure of the oligosaccharide chain, gangliosides can be classified as simple or complex and grouped in different ganglio-series. Hundreds of gangliosides have been identified in vertebrate cells, with different expression patterns during development and related to several physiological processes, especially in the nervous system. While GD3 and its O-acetylated form, 9acGD3, are highly expressed in early developmental stages, GM1, GD1a, GD1b, and GT1b are the most abundant ganglioside species in the mature nervous system. Mutations in enzymes involved in ganglioside metabolism can lead to the accumulation of specific species, a condition termed gangliosidosis and usually marked by severe neurological impairment. Changes in ganglioside levels have also been described in several neurodegenerative diseases, such as Alzheimer's and Parkinson's. In this review, we summarized recent information about the roles of GD3, 9acGD3, GM1, GD1a, GD1b, GT1b, and other ganglioside species in nervous system development and regeneration, as well as clinical trials evaluating possible therapeutic applications of these molecules.

Keywords: 9acGD3; GD1a; GD1b; GD3; GM1; GM2; GM3; GM4; GT1b; gangliosides; glycolipids.

Publication types

  • Review