Chromatin dynamics controls epigenetic domain formation

Biophys J. 2022 Aug 2;121(15):2895-2905. doi: 10.1016/j.bpj.2022.07.001. Epub 2022 Jul 7.

Abstract

In multicellular organisms, nucleosomes carry epigenetic information that defines distinct patterns of gene expression, which are inherited over multiple generations. The enhanced capacity for information storage arises by nucleosome modifications, which are triggered by enzymes. Modified nucleosomes can transfer the mark to others that are in proximity by a positive-feedback (modification begets modification) mechanism. We created a generic polymer model, referred to as 3DSpreader, in which each bead, representing a nucleosome, stochastically switches between unmodified (U) and modified (M) states depending on the states of the neighbors. Modification begins at a specific nucleation site (NS) that is permanently in the M state, and could spread to other loci that is dictated by chromatin dynamics. Transfer of marks among the non-nucleation loci occurs stochastically as chromatin evolves in time. If the spreading rate is slower than the chromatin relaxation rate, which is biologically pertinent, then finite-sized domains form, driven by contacts between nucleosomes through a three-dimensional looping mechanism. Surprisingly, simulations based on the 3DSpreader model result in finite bounded domains that arise without the need for any boundary elements. Maintenance of spatially and temporally stable domains requires the presence of the NS, whose removal eliminates finite-sized modified domains. The theoretical predictions are in excellent agreement with experimental data for H3K9me3 spreading in mouse embryonic stem cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chromatin*
  • Epigenesis, Genetic
  • Epigenomics
  • Mice
  • Mouse Embryonic Stem Cells
  • Nucleosomes*

Substances

  • Chromatin
  • Nucleosomes