Oligomerization processes limit photoactivation and recovery of the orange carotenoid protein

Biophys J. 2022 Aug 2;121(15):2849-2872. doi: 10.1016/j.bpj.2022.07.004. Epub 2022 Jul 6.

Abstract

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity. Here, we probed photoinduced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation a numbed state forms, which remains in a non-photoexcitable structural state for at least ≈0.5 μs after absorption of a first photon.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins* / metabolism
  • Carotenoids / metabolism
  • Cyanobacteria*

Substances

  • Bacterial Proteins
  • Carotenoids