Larval Mortality and Ovipositional Preference in Aedes albopictus (Diptera: Culicidae) Induced by the Entomopathogenic Fungus Beauveria bassiana (Hypocreales: Cordycipitaceae)

J Med Entomol. 2022 Sep 14;59(5):1687-1693. doi: 10.1093/jme/tjac084.

Abstract

Entomopathogenic fungi allow chemical-free and environmentally safe vector management. Beauveria bassiana (Balsamo-Crivelli) Vuillemin is a promising biological control agent and an important component of integrated vector management. We investigated the mortality of Aedes albopictus (Skuse) larvae exposed to five concentrations of B. bassiana using Mycotrol ESO and adult oviposition behavior to analyze the egg-laying preferences of wild Ae. albopictus in response to different fungal concentrations. We examined the mortality of mid-instars exposed to B. bassiana concentrations of 1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108 conidia/ml every 24 h for 12 d. In the oviposition behavior study, the fungus was applied to wooden paddles at 1 × 105, 1 × 107, and 1 × 109 conidia/ml, and the paddles were individually placed into quad-ovitraps. Both experiments contained control groups without B. bassiana. Kaplan-Meier survival analysis revealed that larval mortality was concentration dependent. The median lethal concentration was 2.43 × 105 conidia/ml on d 12. The median lethal time was 3.68 d at 1 × 106 conidia/ml. Oviposition monitoring revealed no significant difference in egg count between the control and treatment paddles. We observed an inverse relationship between the concentration of B. bassiana and the percentage of paddles with eggs. We concluded that concentrations above 1 × 106 conidia/ml are larvicidal, and Ae. albopictus laid similar numbers of eggs on fungus-impregnated and control wooden substrates; however, they were more likely to oviposit on substrates without B. bassiana. With these findings, we suggest that B. bassiana-infused ovitraps can be used for mosquito population monitoring while also delivering mycopesticides to adult mosquitoes.

Keywords: biological control; entomopathogenic fungi; larvae bioassay; oviposition; ovitrap.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes* / physiology
  • Animals
  • Beauveria* / physiology
  • Female
  • Hypocreales*
  • Larva / microbiology
  • Mosquito Vectors
  • Oviposition
  • Pest Control, Biological
  • Spores, Fungal