Neurodevelopmental model of schizophrenia revisited: similarity in individual deviation and idiosyncrasy from the normative model of whole-brain white matter tracts and shared brain-cognition covariation with ADHD and ASD

Mol Psychiatry. 2022 Aug;27(8):3262-3271. doi: 10.1038/s41380-022-01636-1. Epub 2022 Jul 6.

Abstract

The neurodevelopmental model of schizophrenia is supported by multi-level impairments shared among schizophrenia and neurodevelopmental disorders. Despite schizophrenia and typical neurodevelopmental disorders, i.e., autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), as disorders of brain dysconnectivity, no study has ever elucidated whether whole-brain white matter (WM) tracts integrity alterations overlap or diverge between these three disorders. Moreover, whether the linked dimensions of cognition and brain metrics per the Research Domain Criteria framework cut across diagnostic boundaries remains unknown. We aimed to map deviations from normative ranges of whole-brain major WM tracts for individual patients to investigate the similarity and differences among schizophrenia (281 patients subgrouped into the first-episode, subchronic and chronic phases), ASD (175 patients), and ADHD (279 patients). Sex-specific WM tract normative development was modeled from diffusion spectrum imaging of 626 typically developing controls (5-40 years). There were three significant findings. First, the patterns of deviation and idiosyncrasy of WM tracts were similar between schizophrenia and ADHD alongside ASD, particularly at the earlier stages of schizophrenia relative to chronic stages. Second, using the WM deviation patterns as features, schizophrenia cannot be separated from neurodevelopmental disorders in the unsupervised machine learning algorithm. Lastly, the canonical correlation analysis showed schizophrenia, ADHD, and ASD shared linked cognitive dimensions driven by WM deviations. Together, our results provide new insights into the neurodevelopmental facet of schizophrenia and its brain basis. Individual's WM deviations may contribute to diverse arrays of cognitive function along a continuum with phenotypic expressions from typical neurodevelopmental disorders to schizophrenia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Attention Deficit Disorder with Hyperactivity*
  • Autism Spectrum Disorder*
  • Brain
  • Cognition
  • Female
  • Humans
  • Male
  • Schizophrenia*
  • White Matter*