Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion

Nat Commun. 2022 Jul 6;13(1):3887. doi: 10.1038/s41467-022-31481-3.

Abstract

The development of smart-responsive materials, in particular those with non-invasive, rapid responsive phosphorescence, is highly desirable but has rarely been described. Herein, we designed and prepared a series of molecular rotors containing a triazine core and three bromobiphenyl units: o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ. The bromine and triazine moieties serve as room temperature phosphorescence-active units, and the bromobiphenyl units serve as rotors to drive intramolecular rotation. When irradiated with strong ultraviolet photoirradiation, intramolecular rotations of o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ increase, successively resulting in a photothermal effect via molecular motions. Impressively, the photothermal temperature attained by p-Br-TRZ is as high as 102 °C, and synchronously triggers its phosphorescence due to the ordered molecular arrangement after molecular motion. The thermal effect is expected to be important for triggering efficient phosphorescence, and the photon input for providing a precise and non-invasive stimulus. Such sequential photo-thermo-phosphorescence conversion is anticipated to unlock a new stimulus-responsive phosphorescence material without chemicals invasion.