Designing Optical Thermometers Using Down/Upconversion Ca14Al10Zn6O35: Ti4+, Eu3+/Yb3+, Er3+ Thermosensitive Phosphors

Inorg Chem. 2022 Jul 18;61(28):10667-10677. doi: 10.1021/acs.inorgchem.2c00769. Epub 2022 Jul 6.

Abstract

Down/upconversion Ca14Al10Zn6O35 inorganic phosphors codoped with Ti4+/Eu3+ or Yb3+/Er3+ were prepared. The crystal structure and downconversion luminescence properties of Ca14Al10Zn6O35:Ti4+, Eu3+ phosphors were studied in detail. Ti4+ and Eu3+ occupied Al3+ and Ca2+ sites in the host lattice, respectively. Under the excitation of 273 nm, the emission peak in the 300-570 nm band originated from the 2T2 → O2- transition of Ti4+. The f-f transition of Eu3+ ions generated multiple peaks in the 570-800 nm range. The emission intensity of Ti4+ and Eu3+ ions can be used as a fluorescence intensity ratio (FIR) signal. Based on the FIR technology, the maximum relative sensitivity (Sr) and the minimum temperature uncertainty (δT) reached 1.41% K-1 and 0.07 K, respectively. Meanwhile, the temperature-sensing behaviors were explored by the temperature-dependent upconversion spectra of Er3+- and Yb3+-codoped Ca14Al10Zn6O35 phosphors. Based on the fluorescence intensity ratio of thermal coupling levels (Er3+:2H11/2/4S3/2), the maximum Sr and minimum δT of upconversion phosphors reached 1.28% K-1 and 0.08 K in the temperature range of 293-473 K, respectively. Ca14Al10Zn6O35:Ti4+/Eu3+ (Yb3+/Er3+) phosphors realize temperature sensors with higher relative sensitivity, and it is a good candidate material for optical temperature measurement.