Spin transitions in ferric catecholate complexes mediated by outer-sphere counteranions

Dalton Trans. 2022 Jul 26;51(29):10909-10919. doi: 10.1039/d2dt01207c.

Abstract

A family of ionic ferric catecholate complexes 1-4 bearing a disubstituted 3,6-di-tert-butyl-catecholate ligand (3,6-DBCatH2) and tetradentate tris(2-pyridylmethyl)amine (TPA) was prepared and its spin transitions were investigated. Variation of the outer-sphere counteranions (PF6, BPh4, ClO4, BF4) is accompanied by changes in the magnetic behavior of the compounds under consideration. The crystal structures of complexes 1, 3 and 4 were determined by single crystal X-ray diffraction analysis at 100 K and 293 K. The complexes were characterized by the occurrence of a thermally induced spin-crossover process in the solid state with different degrees of completeness, which was confirmed by the comprehensive spectroscopic investigation (EPR, magnetic susceptibility, Mössbauer, and XAS) of the isolated compounds. Complex 4 containing BF4 anions was found to demonstrate valence tautomeric transition along with spin-crossover. This finding makes compound 4 the first salt-like mononuclear ferric catecholate complex exhibiting valence tautomerism.