X-ray-based machine vision technique for detection of internal defects of sterculia seeds

J Food Sci. 2022 Aug;87(8):3386-3395. doi: 10.1111/1750-3841.16237. Epub 2022 Jul 5.

Abstract

An online machine learning system based on X-ray nondestructive quality evaluation technique was developed to detect internal defects of boat-fruited sterculia seed. The X-ray images of boat-fruited sterculia seed were first acquired by the detection system. Then, a boat-fruited sterculia seed net (BSSNet) was trained to identify the defective boat-fruited sterculia seeds based on the X-ray images. The BSSNet was evaluated with the accuracy, precision, specificity, and sensitivity as 94.64%, 93.51%, 92.37%, and 96.64%, respectively. Further, three classical CNN models including VGG16, Resnet, and Inception were trained on the same dataset with accuracy of 95.71%, 94.29%, and 94.64%, respectively. Compared with the classical CNN models, the BSSNet achieved similar or higher accuracy in X-ray images classification. Finally, an independent dataset containing 200 X-ray images was used to validate the performance of the BSSNet and obtained an accuracy of 96.5%. The results presented above demonstrated that this classification method has a great potential for industrial applications. PRACTICAL APPLICATION: An X-ray online detection system integrated with a machine vision model was used to evaluate the quality of boat-fruited sterculia seed. A low-power x-ray detection system can detect internal defects of the object and ensure safety in the production process. The developed machine vision can sort the boat-fruited sterculia seed with an accuracy of 96.5%. The proposed nondestructive detection system showed a good potential to be used in industrial applications.

Keywords: X-ray; boat-fruited sterculia seed; deep learning; nondestructive detection.

MeSH terms

  • Machine Learning
  • Seeds
  • Sterculia*
  • X-Rays