Identifying gaps in actual and simulated/potential yield and growing season precipitation in Morocco

Environ Sci Pollut Res Int. 2022 Dec;29(56):84844-84860. doi: 10.1007/s11356-022-21671-3. Epub 2022 Jul 5.

Abstract

The influence of growing season rainfall on agricultural production is indisputable. In Morocco, the production of crops such as barley, maize, and wheat is impacted by growing season rainfall. Due to persistent gaps in growing season rainfall and other drivers of crop yield, crops have experienced observed yields that are often below projected or potential yields. However, there are currently no studies that have quantified these gaps in yield and growing season rainfall in Morocco. To achieve this objective, time-series crop yield for all three crops and growing season rainfall data for the period 1991-2020 were collected from FAOSTAT and the World Bank climate portal, respectively. Growing season rainfall and crop yield data for the spatial variations were culled from System National de Suivi Agrometeorologique (GCMS) and the yield gaps atlas, respectively, for the same historical period. The data were subjected to bias correction to handle uncertainty. The projected/simulated crop yields and growing season rainfall were computed by regression analysis. Crop yield and growing season rainfall gaps were determined by establishing the difference between the projected and observed crop yields and rainfall data. The results show that observed and simulated wheat have a stronger relationship when compared to the other crops. Also, most years with crop yield gaps are associated with growing season rainfall gaps. Wheat records the lowest number of years with yield gaps and the highest number of years with growing season rainfall gaps during the entire data series. Therefore, even though yield gaps are strongly tied to growing season rainfall gaps, it is not the case for wheat, and therefore other drivers might be important because wheat has the lowest number of years with crop yield gaps and the highest number of years with growing season rainfall gaps. Spatially, yield and growing season rainfall gaps decline with increased latitude. The broader perspective and policy implication here is that a better understanding of yield and growing season rainfall gaps mandates an understanding of growing season rainfall and other drivers of yield. As a way forward, potential research should focus on identifying the drivers of yield gaps, sub-national experimentation at the plot level as well as on closing yield gaps through water and nutrient management.

Keywords: Barley; Crop yield gaps; Growing season rainfall gaps; Maize; Morocco; Wheat.

MeSH terms

  • Agriculture*
  • Climate
  • Climate Change
  • Crops, Agricultural* / growth & development
  • Hordeum / growth & development
  • Morocco
  • Seasons
  • Triticum / growth & development
  • Zea mays / growth & development