Glaucoma diagnostic performance of macular ganglion cell complex thickness using regular and long axial length normative databases

Sci Rep. 2022 Jul 4;12(1):11263. doi: 10.1038/s41598-022-15255-x.

Abstract

The risks of misdiagnosing a healthy individual as glaucomatous or vice versa may be high in a population with a large majority of highly myopic individuals, due to considerable morphologic variability in high myopic fundus. This study aims to compare the diagnostic ability of the regular and long axial length databases in the RS-3000 Advance SD-OCT (Nidek) device to correctly diagnose glaucoma with high myopia. Patients with high myopia (axial length ≥ 26.0 mm) in Chang Gung Memorial Hospital, Taiwan between 2015 and 2020 were included. Glaucoma was diagnosed based on glaucomatous discs, visual field defects and corresponding retinal nerve fiber layer defects. The sensitivity, specificity, diagnostic accuracy and likelihood ratios of diagnosing glaucoma via mGCC thickness in both superior/inferior and GChart mapping using the regular and long axial length normative databases. The specificity and diagnostic accuracy of mGCC thickness for distinguishing glaucomatous eyes from nonglaucomatous eyes among highly myopic eyes were significantly improved using the long axial length database (p = 0.046). There were also significant proportion changes in S/I mapping as well as GChart mapping (37.3% and 48.0%, respectively; p < 0.01) from abnormal to normal in the myopic normal eye group when using the long axial length normative database. The study revealed that clinicians could utilize a long axial length database to effectively decrease the number of false-positive diagnoses or to correctly identify highly myopic normal eyes misdiagnosed as glaucomatous eyes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glaucoma* / diagnostic imaging
  • Humans
  • Myopia* / diagnostic imaging
  • Optic Disk* / diagnostic imaging
  • Retinal Ganglion Cells
  • Visual Field Tests