The Effects of Increasing Dietary Fat on Serum Lipid Profile and Modification of Gut Microbiome in C57BL/6N Mice

J Oleo Sci. 2022;71(7):1039-1049. doi: 10.5650/jos.ess22009.

Abstract

Hyperlipidemia is a condition where the blood shows an elevated level of lipid, such as cholesterol and triglyceride. It is considered a risk factor for all coronary artery death globally. Association of microbiome with non-communicable diseases (NCDs) including hyperlipidemia has been reportedly associated. In this study, we hypothesize that the change in microbiome is correlated to the change in serum lipid level, which resulted by increasing dietary fat consumption. The 32 male, 14-week-old, C57BL/6N were divided into 4 groups, each group received control diet, 10%, 20%, and 40% kcal fat diet prepared from purified pork lard, respectively for 28 days. Fasting serum lipids and fecal microbiome were then analyzed. The group of animals assigned to 40% kcal fat showed significantly increased serum cholesterol, LDL, and HDL (p < 0.05). Microbiome analysis revealed the abundance of Muribaculaceae and Saccharimonadaceae were significantly decreased (p < 0.05). On the contrary, the abundance of Clostridia_UCG014, Akkermansiaceae, Bacteroidaceae, Oscillospiraceae, and Erysipelotrichaceae were significantly increased (p < 0.05). Spearman correlation indicated that the abundance of Akkermansiaceae and Bacteroidaceae were positively associated with the increased of serum cholesterol and LDL (p < 0.05), while the abundance of Muribaculaceae, Clostridia_UCG-014, and Saccharimonadaceae were negatively associated (p < 0.05). These results suggest that dietary fat have ability to manipulated microbiome with relative to elevation of serum lipid profile.

Keywords: gut microbiome; hyperlipidemia; mice model.

MeSH terms

  • Animals
  • Dietary Fats
  • Gastrointestinal Microbiome*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred Strains
  • Microbiota*

Substances

  • Dietary Fats