Saltwater intrusion weakens Fe-(oxyhydr)oxide-mediated (im)mobilization of Ni and Zn in redox-fluctuating soil-groundwater system

Water Res. 2022 Aug 1:221:118799. doi: 10.1016/j.watres.2022.118799. Epub 2022 Jun 26.

Abstract

Iron in the form of (oxyhydr)oxides plays a profound role in the (im)mobilization of heavy metals in environmental geochemical processes occurring in the soil-groundwater system. Here, the influence of saltwater intrusion on Fe-(oxyhydr)oxide-mediated (im)mobilization of Ni(II) and Zn(II) in redox-fluctuating shallow aquifers was evaluated by chemical extraction, μ-XRF-XANES analysis, and 16S rRNA high-throughput sequencing. In phreatic water, the ferrihydrite-bound Ni/Zn (Fh-Ni/Zn) in soils contributed to a 12%-17% increase in carbonate-bound Ni/Zn (Cb-Ni/Zn) due to its own reductive dissolution, whereas the illite-adsorbed Ni/Zn (illite-Ni/Zn) only contributed 6%, 7%. The relative abundance of non-salt tolerant anaerobic Herbaspirillum and iron-reducing associated Ralstonia in soils accounted for nearly 50%. During the oxidation stage, the dissolved ferrihydrite reprecipitated to bind free Ni/Zn. However, saltwater invasion strongly weakened the dissolution-precipitation of ferrihydrite by inhibiting the growth of non-salt tolerant anaerobes and iron-reducing bacteria, and highlighted the contribution of illite-Ni/Zn. Under brackish water intrusion, illite-Zn contributed to a 12% increase in Cb-Zn, thereby surpassing the contribution of Fh-Zn (8%). Under seawater invasion, the dissolution-precipitation of ferrihydrite hardly occurred and the anaerobic salt-tolerant Bacillus (> 95%) prevailed. Therefore, the increase of Cb-Ni/Zn (7%-15%) in the reduction stages was contributed by illite-Ni/Zn. However, in the oxidation stages, the carbonate replaced the original role of reprecipitated ferrihydrite to bind the free Ni/Zn in solutions. These newly recognized mechanisms may be the key to predicting the mobility of toxic elements and developing appropriate remediation techniques of permeable reactive barriers under salinity stress.

Keywords: (Im)mobilization; Ferrihydrite; Illite; Nickel/zinc; Redox fluctuation; Saltwater intrusion.

MeSH terms

  • Groundwater*
  • Iron / analysis
  • Oxidation-Reduction
  • Oxides
  • RNA, Ribosomal, 16S
  • Soil*
  • Zinc / analysis

Substances

  • Oxides
  • RNA, Ribosomal, 16S
  • Soil
  • Iron
  • Zinc