C-section increases cecal abundance of the archetypal bile acid and glucocorticoid modifying Lachnoclostridium [clostridium] scindens in mice

Physiol Rep. 2022 Jul;10(13):e15363. doi: 10.14814/phy2.15363.

Abstract

In humans and animal models, Cesarean section (C-section) has been associated with alterations in the taxonomic structure of the gut microbiome. These changes in microbiota populations are hypothesized to impact immune, metabolic, and behavioral/neurologic systems and others. It is not clear if birth mode inherently changes the microbiome, or if C-section effects are context-specific and involve interactions with environmental and other factors. To address this and control for potential confounders, cecal microbiota from ~3 week old mice born by C-section (n = 16) versus natural birth (n = 23) were compared under matched conditions for housing, cross-fostering, diet, sex, and genetic strain. A total of 601 unique species were detected across all samples. Alpha diversity richness (i.e., how many species within sample; Chao1) and evenness/dominance (i.e., Shannon, Simpson, Inverse Simpson) metrics revealed no significant differences by birth mode. Beta diversity (i.e., differences between samples), as estimated with Bray-Curtis dissimilarities and Aitchison distances (using log[x + 1]-transformed counts), was also not significantly different (Permutational Multivariate ANOVA [PERMANOVA]). Only the abundance of Lachnoclostridium [Clostridium] scindens was found to differ using a combination of statistical methods (ALDEx2, DESeq2), being significantly higher in C-section mice. This microbe has been implicated in secondary bile acid production and regulation of glucocorticoid metabolism to androgens. From our results and the extant literature we conclude that C-section does not inherently lead to large-scale shifts in gut microbiota populations, but birth mode could modulate select bacteria in a context-specific manner: For example, involving factors associated with pre-, peri-, and postpartum environments, diet or host genetics.

Keywords: birth type; developmental programming; maternal microbiome; vaginal birth; xenobiotic.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bile Acids and Salts*
  • Cecum
  • Cesarean Section*
  • Clostridium
  • Female
  • Glucocorticoids
  • Mice
  • Pregnancy

Substances

  • Bile Acids and Salts
  • Glucocorticoids