Topologically Enabled Ultrahigh-Q Chiroptical Resonances by Merging Bound States in the Continuum

Opt Lett. 2022 Jul 1;47(13):3291-3294. doi: 10.1364/OL.462021.

Abstract

Ultrahigh-Q chiroptical resonance metasurfaces based on merging bound states in the continuum (BICs) are investigated and numerically demonstrated. The destruction of C2 symmetry results in the leakage of BICs into quasi-BICs, and a chiral quasi-BIC is obtained by oblique incidence or continuous destruction of the mirror symmetry of the structure. Due to the significant topological properties of merging BICs, the Q factor (over 2 × 105) of the chiral resonance peak obtained is much higher than that of the previous work. Moreover, the proposed structure is easy to fabricate because no additional out-of-plane asymmetry is introduced. The proposed scheme is of importance in chiral biosensing applications.