Absence of Superdiffusion in Certain Random Spin Models

Phys Rev Lett. 2022 Jun 17;128(24):246603. doi: 10.1103/PhysRevLett.128.246603.

Abstract

The dynamics of spin at finite temperature in the spin-1/2 Heisenberg chain was found to be superdiffusive in numerous recent numerical and experimental studies. Theoretical approaches to this problem have emphasized the role of nonabelian SU(2) symmetry as well as integrability, but the associated methods cannot be readily applied when integrability is broken. We examine spin transport in a spin-1/2 chain in which the exchange couplings fluctuate in space and time around a nonzero mean J, a model introduced by De Nardis et al. [Phys. Rev. Lett. 127, 057201 (2021).PRLTAO0031-900710.1103/PhysRevLett.127.057201]. We show that operator dynamics in the strong noise limit at infinite temperature can be analyzed using conventional perturbation theory as an expansion in J. We find that regular diffusion persists at long times, albeit with an enhanced diffusion constant. The finite time spin dynamics is analyzed and compared with matrix product operator simulations.