Temporal dynamics of fine root production, mortality and turnover deviate across branch orders in a larch stand

Oecologia. 2022 Jul;199(3):699-709. doi: 10.1007/s00442-022-05206-8. Epub 2022 Jul 1.

Abstract

Fine roots play a key role in carbon, nutrient, and water biogeochemical cycles in forest ecosystems. However, inter-annual dynamics of fine root production, mortality, and turnover on the basis of long-term measurement have been less studied. Here, field scanning rhizotrons were employed for tracking fine root by branch order over a 6 years period in a larch plantation. For total fine roots, from the first- to the fifth-order roots, annual root length production, length mortality, standing crops, and turnover rate varied up to 3.4, 2.3, 1.5, and 2.3-folds during the study period, respectively. The inter-annual variability of those roots indices in the first-order and the second-order roots were greater than that of the higher order (third- to fifth-order) roots. The turnover rate was markedly larger for the first-order roots than for the higher order roots, showing the greatest variability up to 20 times. Seasonal dynamics of root length production followed a general concentrated pattern with peak typically occurring in June or July, whereas root length mortality followed a general bimodal mortality pattern with the dominant peak in May and the secondary peak in August or October. Furthermore, the seasonal patterns of root length production and mortality were similar across years, especially for the first-order and the second-order roots. These results from long-term observation were beneficial for reducing uncertainty of characterizing fine root demography in consideration of large variation among years. Our findings highlight it is important for better understanding of fine root dynamics and determining root demography through distinguishing observation years and root branch orders.

Keywords: Inter-annual variation; Larix principis-rupprechtii; Rhizotron; Root phenology; Root window; Seasonal pattern.

MeSH terms

  • Carbon
  • Ecosystem
  • Larix*
  • Plant Roots

Substances

  • Carbon