Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic Lateral Sclerosis

Neurotherapeutics. 2022 Jul;19(4):1102-1118. doi: 10.1007/s13311-022-01262-3. Epub 2022 Jun 30.

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.

Keywords: ALS; ATP; Glucose; Glycolysis; Lipids; Metabolism.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Amyotrophic Lateral Sclerosis* / drug therapy
  • Energy Metabolism / physiology
  • Homeostasis
  • Humans
  • Motor Neurons / pathology
  • Neurodegenerative Diseases* / metabolism