Biochar fertilization effects on soil bacterial community and soil phosphorus forms depends on the application rate

Sci Total Environ. 2022 Oct 15:843:157022. doi: 10.1016/j.scitotenv.2022.157022. Epub 2022 Jun 27.

Abstract

Biochar plays a key role in soil phosphorus (P) forms and distribution by affecting soil biochemical characteristics with relevant effects on the microbial community. In this study, we aimed to study the role of biochar in the variation of microbial community and P forms, and the relationships between soil properties, microbial community, and P forms. Here, we conducted a five-year field experiment NPK minerally fertilized with different application rates of biochar; control (B0, 0 kg ha-1 yr-1), low rate (B1500, 1500 kg ha-1 yr-1), medium rate (B3000, 3000 kg ha-1 yr-1), high rate (B6000, 6000 kg ha-1 yr-1). Our study showed that the highest increases in bacterial diversity and abundances coincided with increases in P forms typically retained in bacterial cells (β-glucosidase, adenosine monophosphate-AMP, choline phosphate, and glucose-6 phosphate) and occurred at medium application rates. At low application rates, N2-fixing and P solubilizing and mineralizing bacteria (Sphingomonas, Haliangium, and Bradyrhizobium) increased. P forms retained in bacterial cells decreased at the highest application rates while the most stable forms such as DNA and inositol hexaphosphate (IHP), steadily increased. Stereoisomers of IHP derived from soil microbes (scyllo-IHP and D-chiro-IHP) accounted for the total IHP increases at high application rates. pH and available P and K and total P were highest at high biochar application rates whereas the proportion of organic P was reduced. The most relevant genus in such soils was Gemmatimonas, a polyphosphate accumulating and pyrogenic material degrading bacterium. Therefore, it appears that applying biochar at higher rates reduced the abundance of plant growth promoting bacteria while enhancing the abundance of P accumulating and pyrogenic degrading types.

Keywords: 16S rRNA; Arable soil; Microbial community; NMR; Phosphorus forms.

MeSH terms

  • Bacteria
  • Charcoal / chemistry
  • Fertilization
  • Phosphorus*
  • Soil Microbiology
  • Soil* / chemistry

Substances

  • Soil
  • biochar
  • Charcoal
  • Phosphorus