Corncob-pyrite bioretention system for enhanced dissolved nutrient treatment: Carbon source release and mixotrophic denitrification

Chemosphere. 2022 Nov:306:135534. doi: 10.1016/j.chemosphere.2022.135534. Epub 2022 Jun 27.

Abstract

Solid biomass waste amendment and substrates modification in bioretention systems have been increasingly used to achieve effective dissolved nutrients pollution control in stormwater runoff. However, the risk of excess chemical oxygen demand (COD) leaching from organic carbon sources is often overlooked on most occasions. Pyrite is an efficient electron donor for autotrophic denitrification, but little is known about the efficacy of autotrophic-heterotrophic synergistic effect between additional carbon source and pyrite in bioretention. Here, four bioretention columns (i.e., corncob column (C), pyrite column (P), the corncob-pyrite layered column (L-CP), and the corncob-pyrite mixed column (M-CP)) were designed and filled with soil, quartz sand, and modified media to reveal the synergistic effects. The results showed that the corncob-pyrite layered bioretention could maintain low COD effluent concentration with high stability and efficiency in treating dissolved nutrients. When the influent nitrogen and phosphorus concentrations were 8.46 mg/L and 0.94 mg/L, the average removal rates of ammonia nitrogen, total inorganic nitrogen, and phosphate were 83.6%, 70.52%, and 76.35%, respectively. The scouring experiment showed that placing the corncob in the mulch layer was beneficial to the sustained release of dissolved organic carbon (DOC). Erosion pits were found in the SEM images of used pyrite, indicating that autotrophic denitrifying bacteria in the bioretention could react with pyrite as an electron donor. The relative abundance of Thiobacillus in the submerged zone of the corncob-pyrite layered bioretention reached 38.39%, indicating that the carbon source in the mulch layer increased the relative abundance of Thiobacillus. Coexisting heterotrophic and autotrophic denitrification in this bioretention created a more abundant microbial community structure in the submerged zone. Overall, the corncob-pyrite layered bioretention is highly promising for stormwater runoff treatment, with effective pollution removal and minimal COD emission.

Keywords: Low impact development; Microbial community analysis; Nitrogen removal; Phosphorus removal; Pyrite; Stormwater treatment.

MeSH terms

  • Carbon
  • Denitrification*
  • Iron
  • Nitrogen
  • Nutrients
  • Rain
  • Solid Waste
  • Sulfides
  • Zea mays*

Substances

  • Solid Waste
  • Sulfides
  • pyrite
  • Carbon
  • Iron
  • Nitrogen