Appraisal of groundwater quality and health risk in the Yalamlam basin, Saudi Arabia

Environ Sci Pollut Res Int. 2022 Nov;29(55):83653-83670. doi: 10.1007/s11356-022-21708-7. Epub 2022 Jun 30.

Abstract

Groundwater quality in Yalamlam basin, Saudi Arabia, was appraised for drinking, irrigation, livestock and poultry applications by international standards, drinking water quality index (DWQI), irrigation water quality (IWQ) parameters, and irrigation water quality index (IWQI) calculations. Potential non-carcinogenic health risks due to high NO3- and F- water were assessed for various age groups using the United States Environmental Protection Agency (USEPA) models. Groundwater samples (n = 40) were analyzed for pH, electrical conductivity (EC), and major and minor constituents. The average total dissolved solids (TDS), EC, and total hardness (TH) in the groundwater are 3478 µS/cm, 1739 mg/l, and 1240 mg/l, respectively. High salinity, TH, NO3-, and F- in this aquifer restrict the usage of groundwater for drinking. DWQI values suggest that only 47.5% of samples are potable. According to USEPA recommendation, 72.5%, 80%, and 100% of samples for NO3- and 22.5%, 32.5%, and 40% of samples for F- surpassed the limit (HQoral > 1) for adults, children, and infants, respectively, which creates non-carcinogenic health hazards to the respective age groups. The total hazard index is greater than one in 75%, 87.5%, and 100% of samples computed for adults, children, and infants, respectively. Due to high salinity, 53% of samples are not pertinent for irrigation. USSL classification reveals that groundwater samples in the study site are recommended only for salt-tolerant crops and coarse-textured high permeability soil. In this study, IWQI is reclassified using salinity, which suggests that 68% of samples are moderately suitable for irrigation. Based on EC alone, 83% are desirable for livestock and poultry uses whereas integration of multiple parameters with EC indicates that only 53% are acceptable for all kinds of livestock and poultry uses in the study site. Spatial distribution of major and minor ions, DWQI, HQoral, and IWQI imply that groundwater quality is degraded from upstream to downstream. High salinity groundwater in the downstream wells is unsuitable for any application, which needs a proper treatment before use. Spatial maps created for various parameters are useful for identifying the good quality groundwater zone for groundwater development potential for various stakeholders.

Keywords: Fluoride; Groundwater; Livestock; Nitrate; Risk assessment; Saudi Arabia; Water quality index; Yalamlam basin.

MeSH terms

  • Adult
  • Animals
  • Child
  • Environmental Monitoring
  • Groundwater*
  • Humans
  • India
  • Infant
  • Livestock
  • Saudi Arabia
  • Water Pollutants, Chemical* / analysis
  • Water Quality

Substances

  • Water Pollutants, Chemical