Polyhedral Oligomeric Silsesquioxane Encountering Tannic Acid: A Mild and Efficient Strategy for Interface Modification on Carbon Fiber Composites

Langmuir. 2022 Jul 12;38(27):8334-8341. doi: 10.1021/acs.langmuir.2c00866. Epub 2022 Jun 30.

Abstract

Designing and controlling the interfacial chemistry and microstructure of the carbon fiber is an important step in the surface modification and preparation of high-performance composites. To address this issue, a tannic acid (TA)/polyhedral oligomeric silsesquioxane (POSS) hybrid microstructure, similar to the topological structure, is designed on the fiber surface by one-pot synthesis under mild conditions. Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) show that the functionality and surface roughness of the fiber are significantly broadened. Correspondingly, the tensile strength (TS) of CF-TA/POSS100 and interlaminar shear strength (ILSS) of CF-TA/POSS100-based composites increased by 18 and 34%, respectively. Following that, a failure mechanism study is conducted to demonstrate the interphase structure containing TA/POSS, which is quite critical in optimizing the mechanical performance of the multiscale composites. Moreover, the strategy for the use of TA for constructing a robust coating to replace the traditional modification without affecting the fiber intrinsic strength is an improved design and provides a new idea for the development of high-performance composites.