Convection-enhanced delivery with controlled catheter movement: A parametric finite element analysis

Int J Numer Method Biomed Eng. 2022 Sep;38(9):e3635. doi: 10.1002/cnm.3635. Epub 2022 Jul 15.

Abstract

Convection-enhanced delivery (CED) is an investigational method for delivering therapeutics directly to the brain for the treatment of glioblastoma. However, it has not become a common clinical therapy due to an inability of CED treatments to deliver therapeutics in a large enough tissue volume to fully saturate the target region. We have recently shown that the combination of controlled catheter movement and constant pressure infusions can be used to significantly increase volume dispersed (Vd ) in an agarose gel brain tissue phantom. In the present study, we develop a computational model to predict Vd achieved by various retraction rates with both constant pressure and constant flow rate infusions. An increase in Vd is achieved with any movement rate, but increase in Vd between successive movement rates drops off at rates above 0.3-0.35 mm/min. Finally, we found that infusions with retraction result in a more even distribution in concentration level compared to the stationary catheter, suggesting a potential increased ability for moving catheters to have a therapeutic impact regardless of the required therapeutic concentration level.

Keywords: agarose gel; biphasic finite element analysis; constant pressure infusion; controlled catheter movement; convection-enhanced delivery.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Brain
  • Catheters
  • Convection*
  • Drug Delivery Systems* / methods
  • Finite Element Analysis