Egomotion-related visual areas respond to goal-directed movements

Brain Struct Funct. 2022 Sep;227(7):2313-2328. doi: 10.1007/s00429-022-02523-9. Epub 2022 Jun 28.

Abstract

Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.

Keywords: Functional magnetic resonance; Optic flow; Pointing; Superior parietal lobule; Visuomotor control.

MeSH terms

  • Brain Mapping*
  • Goals
  • Humans
  • Magnetic Resonance Imaging
  • Movement
  • Photic Stimulation
  • Psychomotor Performance
  • Saccades
  • Visual Cortex*